Report No: P WMA 19/G10/00/2413/6

Department of Water Affairs Directorate: Options Analysis

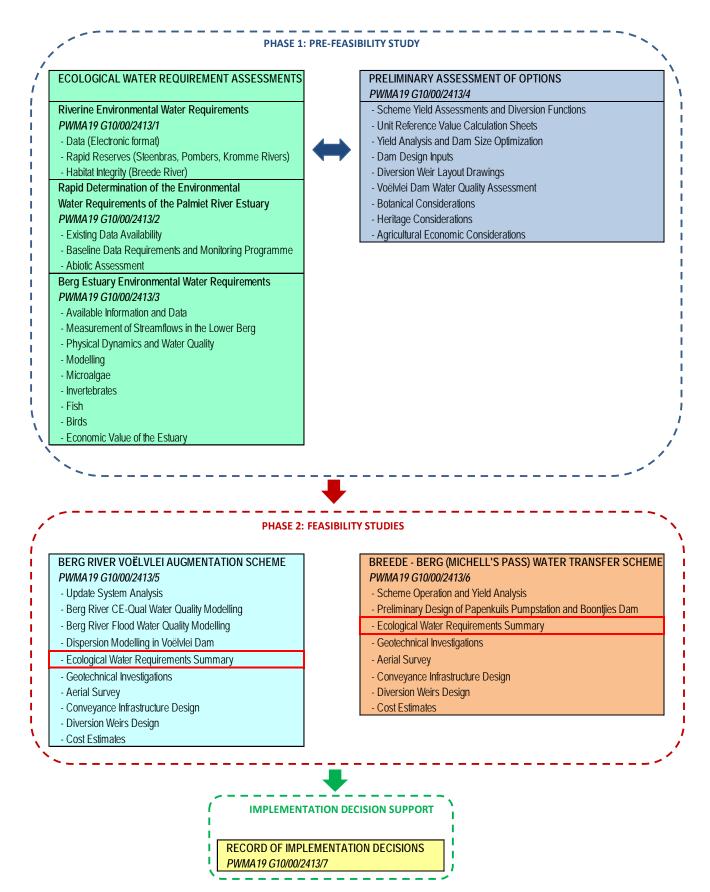
PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

REPORT No.3 – VOLUME 2 Breede-Berg (Michell's Pass) Water Transfer Scheme

APPENDIX No.7

Ecological Water Requirements Assessment Summary for the Berg River-Voëlvlei Augmentation Scheme, and the Breede Berg (Michell's Pass) Water Transfer Scheme

December 2012


STUDY REPORT LIST

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Riverine Environmental Water Requirements
				Appendix 1: EWR data for the Breede River
			PWMA19	Appendix 2: EWR data for the Palmiet River
		Vol 1	G10/00/2413/1	Appendix 3: EWR data for the Berg River
				Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers
				Appendix 5: Habitat Integrity Report – Breede River
				Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary
		Vol 2	PWMA19 G10/00/2413/2	Appendix A: Summary of data available for the RDM investigations undertaken during 2007 and 2008
			G 10/00/24 13/2	Appendix B: Summary of baseline data requirements and the long- term monitoring programme
1	ECOLOGICAL WATER			Appendix C: Abiotic Specialist Report
	REQUIREMENT ASSESSMENTS			Berg Estuary Environmental Water Requirements
			PWMA19 G10/00/2413/3	Appendix A: Available information and data
				Appendix B: Measurement of streamflows in the Lower Berg downstream of Misverstand Dam
				Appendix C: Specialist Report – Physical dynamics and water quality
		Vol 3		Appendix D: Specialist Report – Modelling
			G10/00/2413/3	Appendix E: Specialist Report – Microalgae
				Appendix F: Specialist Report – Invertebrates
				Appendix G: Specialist Report – Fish
				Appendix H: Specialist Report – Birds
				Appendix I: Specialist Report – The economic value of the Berg River Estuary
				Appendix 1: Scheme Yield Assessments and Diversion Functions
				Appendix 2: Unit Reference Value Calculation Sheets
				Appendix 3: Yield Analysis and Dam Size Optimization
	PRELIMINARY			Appendix 4: Dam Design Inputs
2	ASSESSMENT		PWMA19 G10/00/2413/4	Appendix 5: Diversion Weir Layout Drawings
	OF OPTIONS			Appendix 6: Voëlvlei Dam Water Quality Assessment
				Appendix 7: Botanical Considerations
				Appendix 8: Heritage Considerations
				Appendix 9: Agricultural Economic Considerations

STUDY REPORT LIST (cntd)

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Berg River-Voëlvlei Augmentation Scheme
				Appendix 1: Updating of the Western Cape Water Supply System Analysis for the Berg River-Voëlvlei Augmentation Scheme
	Vol 1		PWMA19	Appendix 2: Configuration, Calibration and Application of the CE- QUAL-W2 model to Voëlvlei Dam for the Berg River-Voëlvlei Augmentation Scheme
			G10/00/2413/5	Appendix 3: Monitoring Water Quality During Flood Events in the Middle Berg River (Winter 2011), for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 4: Dispersion Modelling in Voëlvlei Dam from Berg River Water Transfers for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 7 - 12: See list under Volume 2 below
				Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 5: Scheme Operation and Yield Analyses with Ecological Flow Requirements for the Breede-Berg (Michell's Pass) Water Transfer Scheme
3	FEASIBILITY STUDIES			Appendix 6: Preliminary Design of Papenkuils Pump Station Upgrade and Pre-Feasibility Design of the Boontjies Dam, for the Breede-Berg (Michell's Pass) Water Transfer Scheme
		Vol 2	PWMA19 G10/00/2413/6	Appendix 8: Geotechnical Investigations for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 9: LiDAR Aerial Survey, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 10: Conveyance Infrastructure Design Report, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 11: Diversion Weirs Design for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 12: Cost Estimates for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
4	RECORD OF IMPLEMENTATI DECISIONS	ON	PWMA19 G10/00/2413/7	

STUDY REPORT MATRIX DIAGRAM

TABLE OF CONTENTS

1	VOLUME 1: MAIN REPORT AND APPENDICES 1-5	1
1.1	STUDY AREA	1
1.2	GENERATION OF EWR ESTIMATES	3
1.3	APPENDICES 1, 2 AND 3: .TAB, .RUL AND .MRV DATA	3
1.4	APPENDIX 4: RAPID RESERVE ASSESSMENTS (QUANTITY) FOR THE STEENBRAS,	POMBERS AND
KROMME F	RIVERS	
1.5	APPENDIX 5: HABITAT INTEGRITY	
1.5.1	Group 1: Headwaters of the Breede River surrounding the town of Ceres	12
1.5.2	Group 2: Headwaters of the Breede River	
1.5.3	Group 3: Breede River and triburaties around Worcester	
1.5.4	Group 4: Middle Breede and tributaries	
1.5.5	Group 5: Rivers on the Agulhas Plain	
1.5.6	Group 6: Riviersonderend	14
1.5.7	Summary	
2	VOLUME 2: PALMIET ESTUARY EWR REPORT AND APPENDICES A-C	15
2.1	QUANTIFICATION OF THE RESERVE	15
2.2	RECOMMENDATIONS	16
3	VOLUME 3: BERG ESTUARY EWR REPORT AND APPENDICES A-J	17
3.1	QUANTIFICATION OF THE RESERVE	17
3.2	RECOMENDATIONS	
4	REFERENCES	20

LIST OF TABLES

Table 1.1	Node table for the Breede River basin (quat = quaternary, ER = ecoregion,	HI =
	hydrological Index, GZ = geomorphological zone, Alt = altitude, EISC = ecolo	gical
	importance and sensitivity, PES = present ecologiucal status)	4
Table 1.2	Node table for the Palmiet catchment (quat=quaternary, ER = ecoregion,	HI =
	hydrological index, GZ = geomorphological zone, Alt = altitude, EISC = ecolo	gical
	importance and sensitivity, PES = present ecological status)	6
Table 1.3	Node table for the Berg River catchment (quat = quaternary, ER = ecoregion,	HI =
	hydrological index, GZ = geomorphological zone, Alt = altitude, EISC = ecolo	gical
	importance and sensitivity, PES = present ecological status)	7
Table 1.4	Ecological Categories (ECs) of the different components of the river at each EWR	site.8
Table 1.5	EWR summary results for the Steenbras, Pombers and Kromme Rivers	8
Table 1.6	WRCS nodes in the Breede basin	9
Table 1.7	Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 1	12
Table 1.8	Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 2	12
Table 1.9	Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 3	13
Table 1.10	Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 4	13
Table 1.11	Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 6	14
Table 1.12	Proportion of HI Categories for all nodes in the six groups. Data are percenta	ages.
	The proportion change is a comparison against the PES assessment of Kleyn	hans
	(2000) and denotes an improvement or decline in category. Ins. = Instream, R	ip. =
	Riparian.	14
Table 2.1	EWR scenarios	15
Table 2.2	EcoStatus scores for each scenario	16
Table 2.3	Flow distributions for the recommended flow scenario (Scenario 6)	16
Table 3.1	EWR scenarios	17
Table 3.2	EcoStatus scores for each scenario	18
Table 3.3	Flow distribution for the recommended flow scenario (Scenario 7)	19

LIST OF FIGURES

Figure 1.1	The Breede River catchment, showing the sixty-three nodes established.	1
Figure 1.2	The Palmiet River catchment, showing the 10 nodes established.	2
Figure 1.3	The Berg River catchment, showing the 23 nodes established.	2

Figure 1.4 Breede River catchment showing the 63 WRCS nodes, grouped into six groups (1-6)11

P:\Projects\402812 WC Feasibility Studies\REPORTS\Appendices\7-EWR Summary ReportAppendix 7-EWR Assessments-Summary Report.docx

LIST OF ACRONYMS	
AEC	Alternative Ecological Category
BAS	Best Attainable State
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry (pre-2009)
EC	Ecological Category
ECOREGION:	A recurring pattern of ecosystems associated with characteristic
	combinations of soil and landform that characterise that region
EIS	Ecological Importance and Sensitivity: ecological importance of a river is an expression of its importance to the maintenance of ecological diversity and functioning on local and wider scales. Ecological sensitivity (or fragility)
	refers to the system's ability to resist disturbance and its capability to
	recover from disturbance once it has occurred (resilience)
EPHEMERAL:	Characterised as episodic, and lasting only a short time
ECOLOGICAL RESERVE:	The requirement for water that is allocated to sustain ecosystem functions
	and is directly aligned with options for human use arising from rivers to deliver a suite of ecosystem goods and services to society.
ERC	Ecological Reserve Category
EWR	Environmental Water Requirement: prescribes water regimes needed to
	sustain the ecological values of water dependent ecosystems at a low level
	of risk
GAI	Geomorphology Driver Assessment Index
GEOMORPHIC ZONE:	A section of river distinguished by its position in the longitudinal profile and
	which is dominated by macro-reaches having characteristic valley form and
	valley-floor shape
HI	Habitat Integrity: A measure of the ability of an ecosystem to support and
	maintain a balanced, integrated, adaptive community of organisms that has
	a species composition, diversity and functional organisation comparable to
	that of natural habitat of the region
IFR	Instream Flow Requirement
MAR	Mean Annual Run-off
MCM	Million cubic meters
MIRAI	Macroinvertebrate Response Assessment Index
NODE:	A modelling point which "represent(s) the downstream end of a reach or
-	area for which a suite of relationships apply
PERENNIAL:	Characterised as throughout the year, constantly
PES	Present Ecological Status:
QUATERNARY:	Refers to drainage regions of the fourth order
RDM	Resource Directed Measures
REC	Recommended Ecological Category
SASS5	South African Scoring System version 5
VEGRAI	Riparian Vegetation Response Assessment Index
WCWSS	Western Cape Water Supply System
WRCS	Water Resources Classification System
WMA	Water Management Area

1 VOLUME 1: MAIN REPORT AND APPENDICES 1-5

Volume 1 addresses the generation of Ecological Water Requirement (EWR) data for the rivers in the Breede, Palmiet and Berg Catchments.

It used the procedures recommended for undertaking the ecological aspects of the Water Resources Classification System (WRCS) (Dollar *et al.* 2006). These include the identification of nodes; the extrapolation of information from representative sites to other nodes, and the generation of Ecological Water Requirements for maintenance of the rivers in B, C and D categories at each node.

1.1 STUDY AREA

EWR data were generated for:

- Sixty-three river nodes in the Breede River catchment (Figure 1.1; Table 1.1);
- Ten river nodes in the Palmiet River catchment (Figure 1.2; Table 1.2); and
- Twenty-three river nodes in the Berg River catchment (Figure 1.3; Table 1.3).

EWR data for the Palmiet and Berg estuaries are available in other volumes, viz.:

- Report 1, Vol 2: Palmiet Estuary EWR Report
- Report 1, Vol 3: Berg Estuary EWR Report.

EWR data for the Breede Estuary are available in DWAF (2003).

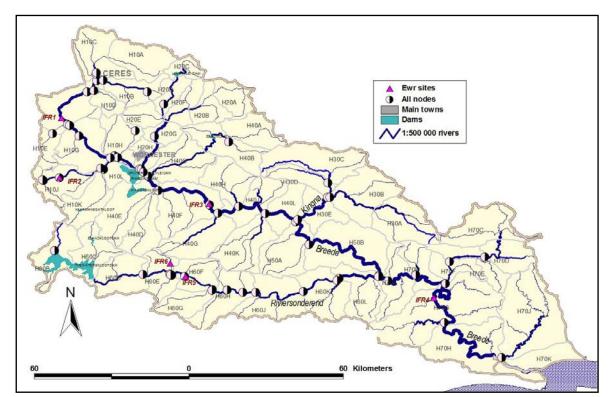


Figure 1.1 The Breede River catchment, showing the sixty-three nodes established.

Feasibility Study into the Potential Development of Further Surface Water Supply Schemes for the Western Cape – EWR Assessments

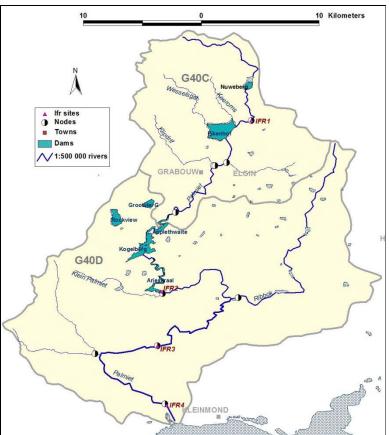


Figure 1.2 The Palmiet River catchment, showing the 10 nodes established.

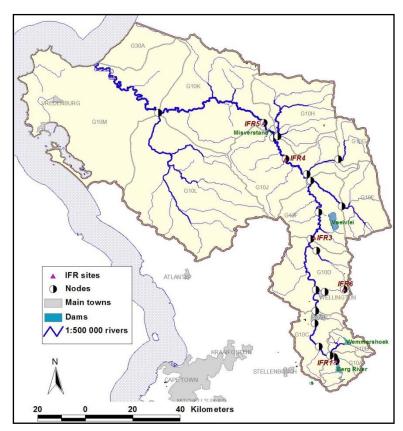


Figure 1.3 The Berg River catchment, showing the 23 nodes established.

1.2 GENERATION OF EWR ESTIMATES

The Desktop Model (Hughes and Münster 2000) was used to generate EWR estimates for all nodes in the three river systems. The results were calibrated using the results from past EWR assessments (Breede Catchment: Ewart-Smith and Brown 2002; Louw and Brown 2001; Palmiet Catchment: Brown *et al.* 2000; Berg Catchment: DWAF 1996; Harding and Brown 2002) and some data generated in this study (Appendices 4 and 5). The assurance rules together with the time series of natural flows per node were used to construct representative time series' of EWR requirements (Report 1, Volume 1, Appendices 1, 2 and 3).

For each node a summary of the desktop estimate (*.tab), an assurance table (*.rul) and the time series of monthly flows (*.mrv) is provided for each ecological category. In most cases these were B, C and D, althought in some cases other categories were determined, for example a BC or CD as appropriate. In all cases, and for each node, a time series of monthly flow data for LOW FLOWS only was also generated.

1.3 APPENDICES 1, 2 AND 3: .TAB, .RUL AND .MRV DATA

The EWR data are presented as .tab, .rul and .mrv files for: Appendix 1: Breede River; Appendix 2: Berg River; Appendix 3: Palmiet River.

1.4 APPENDIX 4: RAPID RESERVE ASSESSMENTS (QUANTITY) FOR THE STEENBRAS, POMBERS AND KROMME RIVERS

Rapid II level Ecological Water Requirement (EWR) determinations were done for the Steenbras, Pombers and Kromme rivers to provide details information for the proposed Wit River Diversion sceheme and to provide input to the catchment-wide assessment of EWRs that was done as part of the Western Cape Feasibility and Pre-feasibility Studies.

The location of the EWR sites are:

- Steenbras (S34.19379°, E18.82467°)
- Pombers (S33.62554°, E19.08985°)
- Kromme (S33.62577°, E19.08166°)

Ecoclassification assessments were done using:

 Present Ecological Status (PES), Ecological Importance and Sensitivity (EIS), Recommended

 Ecological Category (REC) were determined for each site (Table 1.4).using:

 Geomorphology:
 GAI (Level IV) (Rountree and Du Preez, in prep).

 Vegetation:
 VEGRAI (Kleynhans *et al.* 2008).

Macroinvertebrates: MIRAI (Thirion 2008).

The Desktop Model (Hughes and Hannart 2003) was used to determine EWRs for the Steenbras, Pombers and Kromme Rivers (Table 1.5).

Table 1.1Node table for the Breede River basin (quat = quaternary, ER = ecoregion, HI = hydrological Index, GZ = geomorphological zone, Alt =
altitude, EISC = ecological importance and sensitivity, PES = present ecologiucal status)

Node	Comment	River	LON (E)	LAT (S)	Quat	ER	HI	GZ	EISC	Alt	PES
Niv1	U/s of confluence with Dwars	Koekedou	19.29834	33.35961	H10C	WFM	1	UF	М	460	С
Niv2	U/s of confluence with Koekedou	Dwars	19.30059	33.35445	H10C	WFM	1	LF	М	460	D
Niv3	U/s of confluence with Breede	Titus	19.32356	33.37987	H10B	WFM	1	LF	М	460	D
Nvii3	U/s of confluence with Titus, at gauge H1H016	Rooikloof	19.47768	33.42146	H10B	WFM	1	Т	М	960	D
Nvi4	2 km d/s of confluence with Dwars/ Titus	Breede	19.30243	33.38080	H10C	WFM	1	UF	М	440	С
Niv4	U/s of confluence with Breede	Witels	19.29239	33.41749	H10D	WFM	1	Т	М	320	В
Nvi3	U/s of junction of roads R46/ R43	Breede	19.26843	33.42148	H10D	WFM	1	UF	М	300	С
Nvi2	At Tweede Tol on Bainskloof Pass (R303)	Wit	19.14786	33.56785	H10E	WFM	1	UF	VH	280	В
Nviii1	D/s confluence with Wabooms, nearest quaternary boundary to EWR 1	Breede	19.20737	33.53969	H10F	WFM	1	LF	М	240	D/E
Niv6	U/s of confluence with Breede	Wabooms	19.20618	33.53827	H10F	WFM	1	UF	М	240	D
Niv5	U/s of confluence with Breede	Wit	19.19943	33.53577	H10F	WFM	1	LF	М	240	D
Niv7	U/s of confluence with Slanghoek	Slanghoek	19.24024	33.57666	H10G	WFM	1	UF	М	220	D
Niv40	U/s of confluence with Molenaars	Elands	19.11566	33.73389	H10J	WFM	1	Т	VH	520	В
Niv41	U/s of confluence with Molenaars	Krom	19.11231	33.73017	H10J	WFM	1	Т	VH	520	В
Nvii2	At gauging weir H1H018, EWR 2	Molenaars	19.17085	33.72392	H10J	WFM	1	UF	VH	380	В
Niv42	Just South of Rawsonville	Molenaars (Smalblaar)	19.31593	33.68995	H10J	WFM	1	UF	VH	220	D
Niv12	Just South of Rawsonville	Holsloot	19.32507	33.69400	H10K	WFM	1	LF	VH	220	D
Nvii4	At gauging weir H2H005, 7 km West of Hex River Valley	Sanddrif (Spek)	19.53609	33.46457	H20D	WFM	1	UF	М	460	D
Nvii7	At gauging weir H2H006, North of Worcester on N1	Hex	19.50331	33.57849	H20G	WFM	1	UF	М	320	D
Niv10	U/s of confluence with Breede	Hex	19.45648	33.69419	H20H	WFM	1	LF	М	200	D
Niii1	U/s of confluence with Molenaars (Smalblaar)	Breede	19.34871	33.65347	H10G	WFM	1	LR	Н	200	С
Niv8	U/s of confluence with Breede	Bothaspruit/Witrivier	19.36343	33.64720	H10H	WFM	1	LF	Н	200	D
Nvii6	At gauging weir H1H020, 7.5 km North of Worcester	Hartbees	19.43593	33.55895	H10H	WFM	1	MH	Н	560	С
Niv9	U/s of confluence with Breede	Hartbees/ de Wetskloof	19.37469	33.65185	H10H	WFM	1	Т	Н	200	Е
Nvii5	At gauging weir H4H008, 2.3 km North of Worcester	Koo	19.76294	33.59730	H40B	SFM	2	U	М	720	С
Nv3	U/s of confluence with Hex (at Brandvlei reservoir)	Breede	19.45005	33.69210	H10H	WFM	1	LR	Н	200	С
Nii1	D/s of Hex/Breede confluence	Breede	19.46299	33.70234	H10L/H10H	WFM	2	LR	Н	200	С
Niv11	U/s of confluence with Breede	Nuy	19.48130	33.71801	H40C	WFM	2	LF	Н	200	С
Niv13	U/s of confluence with Breede, d/s of Hoeks/Doring (Bobbejaans/Kiesie)	Doring	19.52113	33.76716	H40D	WFM	1	U	Н	200	Е
Nvii8	At gauging weir H4H017, EWR 3	Breede	19.69470	33.81871	H40F	SFM	1	LR	М	180	C/D
Ni1	U/s of confluence with Poesjenels	Breede	19.72813	33.84932	H40F	SFM	2	LR	М	180	D
Niv14	U/s of confluence with Breede	Keisers	19.88989	33.85032	H40K	SFM	2	U	М	160	Е
Niv15	U/s of confluence with Breede	Vink	19.79753	33.82419	H40H	SFM	2	U	М	180	E
Niv20	U/s of confluence with Keisie	Pietersfontein	20.10834	33.73904	H30C	SFM	2	UF	М	280	Е
Niv18	U/s of confluence with Kogmanskloof	Kingna	20.11600	33.79284	H30B	SFM	2	LF	М	220	Е

Node	Com	ment			Ri	iver		LON (E)	LAT (S)	Quat	ER	HI	GZ	EISC	Alt	PES
Nvii9	U/s of confluence with Kogmanskloof				Keisie			20.10709	33.79276	H30D	SFM	2	LR	М	220	E
Nii2	At gauging weir H3H011, u/s of confluer	nce with Breede	9		Kogmanskl	loof		20.00323	33.87040	H30E	SFM	1	LF	М	140	D
Nvi1	U/s of confluence with Kogmanskloof				Breede			19.99688	33.87915	H40L	SFM	1	LF	М	140	D
Niii3	U/s of confluence with Boesmans				Breede			20.04238	33.95968	H50A	SFM	1	LF	М	120	С
Ni2	U/s of confluence with Riviersonderend				Breede			20.28653	34.06804	H50B	SCB	1	LF	М	80	С
Niv24	U/s of confluence with Riviersonderend				Leeu			20.31862	34.08595	H70A	SCB	1	UF	М	80	E
Niv24a	U/s of confluence with Riviersonderend				Klip			20.41509	34.06616	H70B	SCB	1	UF	Н	80	Е
Nv13	At Suurbraak				Buffeljags			20.65671	34.00276	H70D	SCB	1	LF	Н	120	С
Nv14	U/s of Buffeljags Dam				Buffeljags			20.53304	34.01939	H70E	SCB	1	LF	Н	80	E
Niv25	U/s of confluence with Riviersonderend				Buffeljags			20.52031	34.09445	H70F	SCB	1	LF	М	60	D
Nv2	U/s of confluence with Buffelsjag				Breede			20.51719	34.09571	H70B	SCB	1	LR	М	60	С
Niii4	D/s of EWR 4, at Napkei confluence				Breede			20.51240	34.23484	H70G	SCB	1	E/LF	Н	20	С
Niv26	U/s of confluence with Breede				Slang			20.71492	34.35731	H70J	SCB	1	U	М	20	С
Nvii10	U/s of Theewaterskloof Dam				Du Toits			19.15394	33.97951	H60B	SFM	1	UF	Н	320	В
Nv7	2.5 km u/s of confluence with Meul				Riviersonde	erend		19.46327	34.06361	H60D	SCB	1	LF	Н	240	С
Niv28	U/s of confluence with Riviersonderend,	d/s of EWR 6 d	on Baviaans		Baviaans			19.55670	34.06331	H60E	SCB	1	UF	VH	220	В
Niv29	U/s of confluence with Riviersonderend				Sersants			19.55914	34.06608	H60E	SCB	1	UF	Н	220	D
Niv30	U/s of confluence with Riviersonderend				Gobos			19.60911	34.07054	H60F	SCB	1	UF	Н	200	E
Nv8	South of Genadendal, d/s of R404 bridg	е			Riviersonde	erend		19.56392	34.06627	H60E	SCB	1	LF	Н	220	D
Niv31	U/s of confluence with Riviersonderend				Kwartel			19.70304	34.12027	H60G	SCB	1	LF	Н	180	D
Nv9	At confluence with Kwartel, EWR 5				Riviersonde	erend		19.70425	34.11639	H60F	SCB	1	LF	Н	180	E
Niv33	U/s of confluence with Riviersonderend				Soetmelks	vlei		19.75634	34.11850	H60H	SCB	1	UF	Н	180	D
Niv34	U/s of confluence with Riviersonderend				Slang			19.81128	34.12776	H60H	SCB	1	UF	Н	160	С
Nv10	D/s of confluence with Slang and Lindes	shof town			Riviersonde	erend		19.85624	34.12656	H60H	SCB	1	LF	Н	160	D
Nv11	9 km u/s of Stormsvlei, alongside N2				Riviersonde	erend		20.02322	34.12470	H60J	SCB	1	LF	Н	120	D
Niv35	U/s of confluence with Riviersonderend				Kwassadie			20.14142	34.08539	H60K	SCB	1	LR	Н	100	E
Nv12	D/s of confluence with Kwassadie				Riviersonde	erend		20.14743	34.07773	H60K	SCB	1	LF	Н	100	D
Ni3	U/s of confluence with Breede				Riviersonde			20.28513	34.07071	H60L	SCB	1	LF	Н	80	D
	Western Folded Mountains	WFM		Lowland Riv	-		nsitiona		Т	A/B: Natura	0,	Natur	al		H=Very	High
	Southern Folded Mountains	SFM		Lower Footh			classifie		Uc	B: Largely r				-	=High	
	Southern Coastal Belt	SCB		Upper foothi	lls				MH	C: Moderate	ely modifi	ed		М	=Mode	ate
	South Western Coastal Belt	SWCB				Est	uary		E							

Table 1.2 Node table for the Palmiet catchment (quat=quaternary, ER = ecoregion, HI = hydrological index, GZ = geomorphological zone, Alt = altitude, EISC = ecological importance and sensitivity, PES = present ecological status)

Node	Comment	R	liver		LON (E)	LAT (S	5) (Quat	ER	HI	GZ	EISC	PES	Alt
Pvi1	U/s of Applethwaite reservoir	Palmiet	t		18.99791	-34.184	28 G	G40C	SFM	1	LF	М	D	260
Piv9	U/s of confluence with Klipdrif, 0.5 km u/s of R321	Palmiet	t		19.02777	-34.148	80 G	G40C	SFM	1	LF	М	D	280
Piv8	U/s of confluence with Palmiet, 0.5 km u/s of R321	Klipdrif			19.02679	-34.148	71 C	640C	SFM	1	Uncl	М	D	280
Piv10	U/s of confluence with Palmiet, 0.5 km West of R321	Witklipp	oiesklo	of	19.03684	-34.146	37 G	G40C	SFM	1	Uncl	М	D	280
Piii1	U/s Eikenhof Dam at EWR 1	Palmiet	t		19.05545	-34.114	36 G	640C	SFM	1	MS→UF	М	С	340
Piii3	Top of estuary, at EWR 4	Palmiet	t		18.99073	-34.330	53 G	640D	SFM	1	UF→LF	VH	В	5
Piv12	D/s of confluence of Dwars and Louws ¹	Dwars/	Louws	s	18.93654	-34.291	63 G	640D	SFM	1	LF	VH	С	60
Piii2	At EWR 3	Palmiet	t		18.98457	-34.285	71 C	640D	SFM	1	UF→LF	VH	С	60
Piv7	U/s of confluence with Palmiet	Krom/ F	Ribbok	κ.	19.04561	-34.248	97 C	340D	SFM	1	LF	VH	С	120
Piv4	U/s of confluence with Palmiet	Klein-P	almiet		18.98786	-34.245	84 C	640D	SFM	1	Uncl	VH	С	160
V	Vestern Folded Mountains WFM Mountain Stream	n MS	A/	B: Na	tural/Largely	Natural	١	/H=Ve	ery Higł	۱				

Western Folded Mountains	WFM	Moun
Southern Folded Mountains	SFM	Upper
Southern Coastal Belt	SCB	Lower
South Western Coastal Belt	SWCB	Lowla
		Trans

	• •		~
Mountain Stream	I	MS	
Upper Foothill		UF	
Lower Foothill		LF	
Lowland River		LR	
Transitional		Т	
Estuary		E	
Unclassified		Uncl	

A/B: Natural/Largely Natural	VH=Very Hig
B: Largely natural	H=High
C: Moderately modified	M=Moderate

1 This section of river d/s of the confluence of the Dwars and the Louws, u/s of the Palmiet River, is unnamed on the 1:50 000 maps.

Table 1.3Node table for the Berg River catchment (quat = quaternary, ER = ecoregion, HI = hydrological index, GZ = geomorphological zone,
Alt = altitude, EISC = ecological importance and sensitivity, PES = present ecological status)

Node	Comment	River	LON (E)	LAT (S)	Quat	ER	HI	GZ	Alt (m)	EISC	PES
Bviii1	D/s of Berg River dam at EWR 1	Berg	19.05265	-33.89657	G10A	SWCB	1	UF	180	Н	С
Biv5	U/s of confluence with Berg	Franschoek	19.0455	-33.88126	G10A	SWCB	1	UF→LF	180	Н	D
Biii2	U/s of confluence with Berg	Wemmershoek	19.03034	-33.87662	G10B	SWCB	1	LR→LF	160	Н	D
Bvii2	Skuifraam pump station area, 1.0 km d/s of confluence with Dwars	Berg	18.98828	-33.84149	G10C	SWCB	1	LF	140	L	D
Bvii9	U/s of Paarl	Berg	18.97234	-33.75494	G10C	SWCB	1	LF	120	L	D
Biii3	At gauging weir G1H020	Berg	18.97438	-33.70766	G10C	SWCB	1	UF→LF	100	L	D
Bvii3	North of Wellington, at gauging weir G1H037	Krom/ Kromme	19.00971	-33.63549	G10D	SWCB	1	UF	120	М	D
Bvii10	D/s of confluence with Krom/ Kromme, at gauging weir G1H015	Berg	18.97668	-33.62711	G10D	SWCB	1	LF	100	М	D
Bviii2	At EWR 6, Rapid II Reserve, d/s of confluence with Pombers	Krom/ Kromme	19.08166	-33.62577	G10D	SWCB	1	UF	260	М	D
Bvii4	At gauging weir G1H041	Kompanjies	18.97811	-33.4792	G10D	SWCB	1	LF	80	М	D
Bvii5	At gauging weir G1H036 and u/s of EWR 3	Berg	18.95691	-33.43499	G10D	SWCB	1	LR	60	М	D
Biii4	At gauging weir G1H008	Klein Berg	19.07438	-33.31159	G10E	SWCB	1	LF	120	М	D
Bvii11	U/s of Voelvlei canal	Berg	18.98714	-33.33408	G10F	SWCB	1	LR	60	М	D
Biv3	U/s of confluence with Berg	Klein-Berg	18.95629	-33.21508	G10F	SWCB	1	LF→LR	60	М	D
Biv1	U/s of confluence Klein-Berg	Berg	18.95037	-33.21477	G10F	SWCB	1	LR	60	М	D
Bi1	At gauging weir G1H028	Vier-en-Twintig	19.0608	-33.1339	G10G	WFM	1	T→UF	140	Н	В
Biii5	At gauging weir G1H035	Matjies	18.83264	-33.04735	G10H	SWCB	1	LF	40	М	D
Biv4	U/s of confluence with Berg	Vier-en-twintig	18.94183	-33.19003	G10J	SWCB	1	LF→LR	60	М	D
Bvii6	D/s of EWR 4, at gauging weir G1H013	Berg	18.86193	-33.13282	G10J	SWCB	1	LR	40	М	D
Bvii8	U/s Misverstand reservoir, d/s confluence with Matjies	Berg	18.81488	-33.05225	G10J	SWCB	1	LR	40	М	D
Bvii12	3.5 km d/s of Misverstand reservoir, at EWR 5	Berg	18.77929	-32.99602	G10K	SWCB	1	LR	20	Н	D
Biv2	U/s of confluence with Sout, head of estuary	Berg	18.3808	-32.95804	G10K	SWCB	1	LF	5	L	D
Bii1	U/s of confluence with Berg	Sout	18.38059	-32.95847	G10L	SWCB	2	LR	5	L	D

Western Folded Mountains	WFM
Southern Folded Mountains	SFM
Southern Coastal Belt	SCB
South Western Coastal Belt	SWCB

Lowland River	LR
Lower Foothills	LF
Upper foothills	UF
Transitional	Т
Unclassified	Uc
Mountain headwater	MH
Estuary	E

A/B: Natural/Largely Natural
3: Largely natural
C: Moderately modified

VH=Very High	
H=High	
M=Moderate	

River	Hydrology	Geomorphology /Floodplain (GAI)	Riparian vegetation (VEGRAI)	Macroinvertebrates (MIRAI)	Ove	rall	Recommended EC for Ecological Reserve	Alternative EC
Steenbras River	E/F	B/C	B/C	A	B/0	2	B/C	None
Pombers River (Sub-reach 1)	*E/F	*C	*D	*В	*C	D	С	None
Pombers River (Sub-reach 2)	E/F	D	Е	*В	D	D	C	None
Kromme River	E/F	D/E	F	B/C	D/I	=	D	None

Table 1.4Ecological Categories (ECs) of the different components of the river at each
EWR site.

*Visited by specialists but no detailed data collected, ECs were estimated based on specialists' observation.

Table 1.5	EWR summary results for the Steenbras, Pombers and Kromme Rivers
-----------	--

River	REC	nMAR/a (MCM)	Total EWR (MCM)
Steenbras	B/C	54.876	7.404 (13.49 %nMAR)
Pombers	С	1.518	0.331 (21.82 %nMAR)
Kromme	D	3.557	0.505 (14.19 %nMAR)

1.5 APPENDIX 5: HABITAT INTEGRITY

Ecological Reserves for rivers and estuaries rely on information on the present day ecological condition of aquatic systems. Since no recent assessments were available for the Breede River and its tributaries, up-to-date (September 2009) condition assessments were done for 50 nodes (see Section 1.1) in the basin (Table 1.6), using the Habitat Integrity (HI) method (Kleynhans 1996).

To provide an idea of changes over time, the 2009 data were compared with the desktop estimates of ecological condition (PES¹) for the same river system (Kleynhans 2000) that was originally developed to serve the National Water Balance.

¹ Present Ecological Status

Node	Comment	River	LON (E)	LAT (S)	Quat	Assessed?	Group
Nvii3	U/s of confluence with Titus, at gauge H1H016	Rooikloof	19.4777	-33.42146	H10B	N	1
Niv3	U/s of confluence with Breede	Titus	19.3236	-33.37987	H10B	Y	1
Nvi4	2 km d/s of confluence with Dwars/ Titus	Breede	19.3022	-33.38129	H10C	Y	1
Niv2	U/s of confluence with Koekedou	Dwars	19.3006	-33.35445	H10C	Y	1
Niv1	U/s of confluence with Dwars	Koekedou	19.2983	-33.35961	H10C	Y	1
Nvi3	U/s of junction of roads R46/ R43	Breede	19.2684	-33.42148	H10D	Y	2
Niv4	U/s of confluence with Breede	Witels	19.2924	-33.41749	H10D	Y	2
Nvi2	At Tweede Tol on Bainskloof Pass (R303)	Wit	19.1479	-33.56785	H10E	Y	2
Nviii1	D/s confluence with Wabooms, nearest quaternary boundary to EWR 1	Breede	19.2073	-33.53985	H10F	Y	2
Niv6	U/s of confluence with Breede	Wabooms	19.2062	-33.53827	H10F	Y	2
Niv5	U/s of confluence with Breede	Wit	19.1994	-33.53577	H10F	Y	2
Niii1	U/s of confluence with Molenaars (Smalblaar)	Breede	19.3491	-33.65363	H10G	N	3
Niv7	U/s of confluence with Slanghoek	Slanghoek	19.2402	-33.57666	H10G	Y	2
NI: .0	ů.	Bothaspruit/				N	2
Niv8	U/s of confluence with Breede	Witrivier	19.3634	-33.6472	H10H	Y	3
Nv3	U/s of confluence with Hex (at Brandvlei reservoir)	Breede	19.451	-33.69282	H10H	Y	3
Nvii6	At gauging weir H1H020, 7.5 km North of Worcester	Hartbees	19.4359	-33.55895	H10H	Ν	3
		Hartbees/					
Niv9	U/s of confluence with Breede	de Wetskloof	19.3747	-33.65185	H10H	Y	3
Niv40	U/s of confluence with Molenaars	Elands	19.1157	-33.73389	H10J	Y	2
Niv41	U/s of confluence with Molenaars	Krom	19.1123	-33.73017	H10J	Ŷ	2
Nvii2	At gauging weir H1H018, EWR 2	Molenaars	19.1709	-33.72392	H10J	Y	2
		Molenaars/					
Niv42	Just South of Rawsonville	Smalblaar	19.3159	-33.68995	H10J	Y	3
Niv12	Just South of Rawsonville	Holsloot	19.3251	-33.69406	H10K	Y	3
Nii1	D/s of Hex/Breede confluence	Breede	19.4638	-33.70374	H10L/ H10H	Ν	3
Nvii4	At gauging weir H2H005, 7 km West of Hex River Valley	Sanddrif/ Spek	19.5361	-33.46457	H20D	Ν	3
Nvii7	At gauging weir H2H006, North of Worcester on N1	Hex	19.5033	-33.57849	H20G	Y	3
Niv10	U/s of confluence with Breede	Hex	19.4565	-33.69419	H20H	Y	3
Niv18	U/s of confluence with Kogmanskloof	Kingna	20.116	-33.79284	H30B	Y	4
Niv20	U/s of confluence with Keisie	Pietersfontein	20.1083	-33.74194	H30C	Y	4
Nvii9	U/s of confluence with Kogmanskloof	Keisie	20.1068	-33.79282	H30D	Y	4
Nii2	At gauging weir H3H011, u/s of confluence with Breede	Kogmanskloof	20.0032	-33.87049	H30E	Y	4
Nvii5	At gauging weir H4H008, 2.3 km North of Worcester	Коо	19.7629	-33.5973	H40B	N	3
Niv11	U/s of confluence with Breede	Nuy	19.4813	-33.71801	H40C	Y	3
	U/s of confluence with Breede, d/s of Hoeks/Doring	*					-
Niv13	(Bobbejaans/Kiesie)	Doring	19.5158	-33.76905	H40D	Y	3
Ni1	U/s of confluence with Poesjenels	Breede	19.7252	-33.84912	H40F	Y	4
Nvii8	At gauging weir H4H017, EWR 3	Breede	19.6947	-33.81871	H40F	Ý	4
Niv15	U/s of confluence with Breede	Vink	19.7975	-33.82419	H40H	Ý	4
Niv14	U/s of confluence with Breede	Keisers	19.8899	-33.85032	H40K	Ŷ	4
Nvi1	U/s of confluence with Kogmanskloof	Breede	19.9965	-33.87871	H40L	N	4
Niii3	U/s of confluence with Boesmans	Breede	20.0426	-33.95977	H50A	N	4
Ni2	U/s of confluence with Riviersonderend	Breede	20.0420	-34.06867	H50B	N	4
Nvii10	U/s of Theewaterskloof Dam	Du Toits	19.1539	-33.97951	H60B	Y	6
Nv7	2.5 km u/s of confluence with Meul	Riviersonderend	19.4633	-34.06361	H60D	Y	6
	U/s of confluence with Riviersonderend, d/s of EWR						0
Niv28	6 on Baviaans	Baviaans	19.5567	-34.06331	H60E	Y	6
Nv8	South of Genadendal, d/s of R404 bridge	Riviersonderend	19.5639	-34.06627	H60E	Y	6
Niv29	U/s of confluence with Riviersonderend	Sersants	19.5591	-34.06608	H60E	Y	6
Niv30	U/s of confluence with Riviersonderend	Gobos	19.6091	-34.07054	H60F	Y	6
Nv9	At confluence with Kwartel	Riviersonderend	19.7049	-34.11756	H60F	N	6
Niv31	U/s of confluence with Riviersonderend	Kwartel	19.703	-34.12027	H60G	Y	6
Nv10	D/s of confluence with Slang and Lindeshof town	Riviersonderend	19.8562	-34.12656	H60H	Y	6
NB-04	U/s of confluence with Riviersonderend	Slang	19.8113	-34.12776	H60H	Y	6
Niv34			17.0110	01112110		•	

Table 1.6 WRCS nodes in the Breede basin

Node	Comment	River	LON (E)	LAT (S)	Quat	Assessed?	Group
Nv11	9 km u/s of Stormsvlei, alongside N2	Riviersonderend	20.0232	-34.1247	H60J	Y	6
Niv35	U/s of confluence with Riviersonderend	Kwassadie	20.1414	-34.08539	H60K	Y	6
Nv12	D/s of confluence with Kwassadie	Riviersonderend	20.1474	-34.07773	H60K	Ν	6
Ni3	U/s of confluence with Breede	Riviersonderend	20.2851	-34.07071	H60L	Ν	6
Niv24	U/s of confluence with Riviersonderend	Leeu	20.3186	-34.08595	H70A	Y	4
Nv2	U/s of confluence with Buffelsjag	Breede	20.5172	-34.09622	H70B	Ν	4
Niv24a	U/s of confluence with Riviersonderend	Klip	20.4151	-34.06616	H70B	Y	4
Nv13	At Suurbraak	Buffeljags	20.6567	-34.00276	H70D	Ν	4
Nv14	U/s of Buffeljags Dam	Buffeljags	20.5726	-34.00277	H70E	Y	4
Niv25	U/s of confluence with Riviersonderend	Buffeljags	20.5188	-34.09603	H70F	Ν	4
Niii4	D/s of EWR 4, at Napkei confluence	Breede	20.5146	-34.23372	H70G	Ν	5
Niv26	U/s of confluence with Breede	Slang	20.7149	-34.35731	H70J	N	5

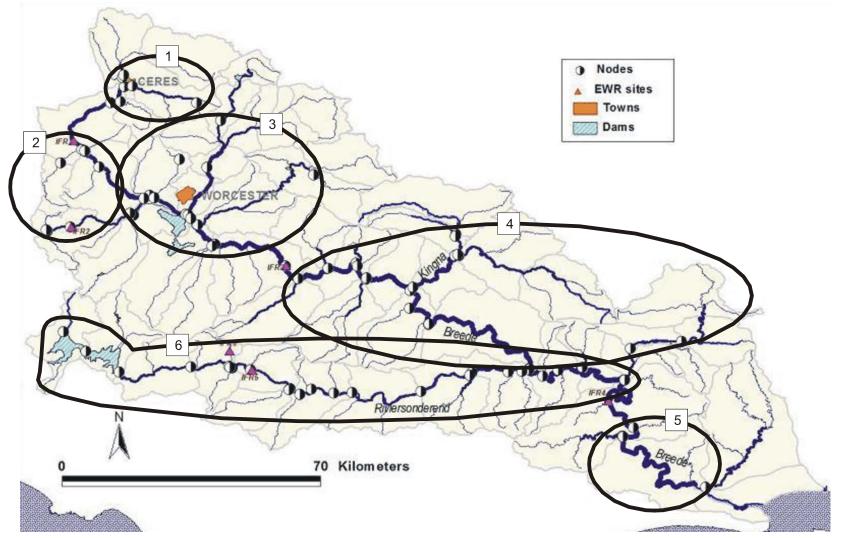


Figure 1.4 Breede River catchment showing the 63 WRCS nodes, grouped into six groups (1-6)

1.5.1 Group 1: Headwaters of the Breede River surrounding the town of Ceres

In general, the rivers scored better in the 2009 assessments than they did in 2000 (Table 1.7). This is probably a result of clearing of alien vegetation and improved management, e.g., of Koekoedou Dam.

Node		PES (2000)	HI 2009			
11000		FE3 (2000)	Instream	Riparian		
Niv1: Koekedou River		D	С	С		
Niv2: Dwars River		D	D	D		
Niv3: Titus River		D	D	D		
Nvii3: Rooikloof river		D	-	-		
Nvi4: Breede River, Ceres		D	D	С		

Table 1.7 Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 1

1.5.2 Group 2: Headwaters of the Breede River

-

Seven of the ten nodes assessed in Group 2 were in a better condition than reported by Kleynhans (2000) (Table 1.8). There could be various reasons for this, but at least some of the improvement appears to be a result of extensive clearing of alien vegetation in the Breede (in Mitchell's Pass), Witte and Molenaars Rivers in the past decade, with a concomitant improvement in condition. Slanghoek and Wabooms Rivers both declined in condition between 2000 and 2009, and are now both aggressively dredged and channelised. The riparian vegetation alongside them has been all but completely destroyed and the impacts of over-abstraction are noticeable to the naked eye.

Table 1.8	Comparison of PES (Kleynhans 200	0) and HI (2009)	for nodes in Group 2

.....

Node	PES (2000)	HI (2009)		
	FE3 (2000)	Instream	Riparian	
Niv4: Witels River	С	В	В	
Nvi3: Breede River, Mitchells Pass/R43	С	С	В	
Nvi2: Witte River	С	В	В	
Nviii1: Breede River (IFR1: Witbrug)	A	С	D	
Niv6: Wabooms River	D	D	D	
Niv5: Breede River, Slanghoek bridge	D	-	-	
Niv7: Slanghoek River	D	E	D	
Niv40: Krom River	D	В	В	
Niv41: Elands River	C	В	В	
Nvii2: Molenaars River (IFR 2)	C	В	С	

1.5.3 Group 3: Breede River and triburaties around Worcester

Nine of the fourteen nodes in this group were assessed (Table 1.9). Of these, none was in a better condition, and most were considerably worse, in 2009 than in 2000. In general, the condition of these rivers was poorer than that of Group 1 or 2. For the most part, the tributaries of the Breede River in this area have been extensively 'engineered', with a consequent loss of ecological function and value. Indeed, much of the protection from poor quality runoff from their catchments that would have been afforded these rivers by their riparian vegetation has been destroyed. It is likely that this will have affected not only river condition, but also the reliability of supply for those who depend on these rivers for drinking water.

Node	BES (2000)	HI (PES) 2009		
Node	PES (2000)	Instream	Riparian	
Niv42: Molenaars (Smalblaar) River	С	D	E	
Niv12: Holsloot River	С	D	E	
Nvii4: Sanddrif River	D	-	-	
Nvii7: upper Hex River	D	D	D	
Niv10: lower Hex River	D	D	D	
Niii1: Breede River, u/s of Papenkuils	D	-	-	
Niv8: Bothaspruit River	С	D	D	
Nvii6: Hartbees River	С	-	-	
Niv9: Hartbees River	С	E	D	
Nvii5: Koo River	С	-	-	
Nv3: Breede River, Papenkuils	С	С	С	
Nii1: Breede River, d/s of Papenkuils	С	-	-	
Niv11: Nuy River	С	D	С	
Niv13: Doring River	С	E	E	

 Table 1.9
 Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 3

1.5.4 Group 4: Middle Breede and tributaries

Apart from two nodes on the Breede mainstem, which remained the same, the condition of all other nodes was lower than that in 2000 (Table 1.10). The current condition of these systems is cause for serious concern. Almost without exception, these tributaries have been dredged, bulldozed, channelized and in some instances levees have been constructed alongside them to prevent overbank flooding. In most cases only hardy and pioneering annuals or exotic species remained in the riparian areas, and there was little or no variety of instream habitat. Some, for example, the Vink, the Kingna and the Kogmanskloof had excessive algal growth and/or exotic instream vegegtation, an indication of a nutrient surplus and a breakdown in the self cleansing functions of the ecosystem. The Leeu, the Klip and the middle Buffeljags Rivers were in the worst condition as the impacts listed above were exacerbated by a complete cessation of flows in September, when the other rivers – themselves subjected to high levels of abstraction – were flowing.

Node	PES (2000)	HI (2	009)
noue	PE3 (2000)	Instream	Riparian
Nvii8: Breede River, Le Chasseur (IFR3)	D	С	С
Ni1: Breede River, Poesjenels	D	С	С
Niv14: Keisers River	D	E	E
Niv15: Vink River	D	E	D
Niv20: Pietersfontein River	С	E	D
Niv18: Kingna River	С	E	D
Nvii9: Kiesie River	С	E	D
Nii2: Kogmanskloof River	С	D	D
Nvi1: Breede River, Ashton	D	-	-
Niii3: Breede River, Bonnievale	С	-	-
Ni2: Breede River, confluence with Riviersonderend River	С	-	-
Niv24: Klip River	С	E	E
Niv24: Leeu River	С	E	E
Nv13: upper Buffeljags/ Tradouw River	С		
Nv14 middle Buffeljags River	D	E	E
Niv25, lower Buffeljags River	С	D	E
Nv2: Breede River, Swellendam	С	-	-

Table 1.10 Comparison of PES (Kleynhans 2000) and HI (2009) for nodes in Group 4

1.5.5 Group 5: Rivers on the Agulhas Plain Not assessed.

1.5.6 Group 6: Riviersonderend

Thirteen of the 15 nodes in this group were assessed. Of these, only the du Toits River was in a better condition that in 2000 (Table 1.11). Eight of the rivers were in poorer condition in 2009 than in 2000. The sorts of impacts recorded were similar to those for Group 3 and 4, although alien infestation was higher in Groups 6 than in Group 3 and 4.

Table 1.11	Comparison of PES	(Kleynhans 2000)) and HI (2009) for no	des in Group 6
------------	-------------------	------------------	------------------------	----------------

Node	DES (2000)	HI (PES) 2009		
Node	PES (2000)	Instream	Riparian	
Nvii10: du Toits River	С	В	В	
Nv7: Riviersonderend, Helderstroom	С	С	С	
Niv28: Baviaans River	С	D	D	
Niv29: Sersants River	С	D	D	
Niv30: Gobos River	С	D	E	
Nv8: Riviersonderend, Genadendal	С	D	D	
Niv31: Kwartel River	С	D	D	
Nv9: Riviersonderend, Greyton	С	-	-	
Niv33: Soetmelksvlei River	С	D	D	
Niv34: Slang River	С	С	С	
Nv10: Riviersonderend, u/s of Riviersonderend	С	D	D	
Nv11: Riviersonderend, d/s of Riviersonderend	D	D	D	
Niv35: Kwassadie River	D	E	E	
Nv12: Riviersonderend, d/s Stormsvlei	D	-	-	
Ni3: Riviersonderend, confluence with Breede River	D	-	-	

1.5.7 Summary

The six groups of nodes are shown in Table 1.12. In general, the condition of the rivers declined from the upper reaches of the Breede eastwards to the estuary. The sites assessed in Groups 1 and 2, near Ceres and in the Du Toitskloof Mountains were in a better condition than those of the other groups. Seventy-five percent of reaches in Group 1 and 80% of those in Group 2 were in a C category or higher. Group 3 nodes near Worcester were generally in a C or D category. Group 4, from Robertson to Swellendam, were in the worst condition with 83% in a D or an E category. Half of the Group 6 nodes were in a D category, the remainder in a B, C or E.

Table 1.12Proportion of HI Categories for all nodes in the six groups. Data are
percentages. The proportion change is a comparison against the PES
assessment of Kleynhans (2000) and denotes an improvement or decline in
category. Ins. = Instream, Rip. = Riparian.

			Category		
Group	А	В	С	D	E
	InsRip.	InsRip.	InsRip.	InsRip.	InsRip.
1	0 - 0	25 - 25	50 - 50	25 - 25	0 - 0
2	20 - 0	40 - 50	20 - 30	10 - 20	10 - 0
3	0 - 0	0 - 0	55 - 45	45 - 55	0 - 0
4	0 - 0	0 - 0	17 - 17	42 - 42	41 - 41
5					
6	0 - 0	8 - 8	17 - 25	67 - 50	8 - 17

2 VOLUME 2: PALMIET ESTUARY EWR REPORT AND APPENDICES A-C

Volume 2 addresses the generation of Ecological Water Requirement (EWR) data for the Palmiet Estuary, a small system located 75 km south east of Cape Town.

The **Present Ecological Status** of the estuary is a **C**. Major drivers of change in the system were a significant reduction in river inflow (floods and baseflows), increased mouth closure; reduced sediment scouring and an increased nutrient load from the catchment. Of special concern were the occurrence of macrophyte blooms in the estuary as a result of increase nutrients, reduce baseflow and closed (or semi-closed) mouth conditions. Die-off of these macrophyte blooms causes hypoxic or anoxic conditions in the estuary, which in turn puts the rest of the ecosystem under stress. An additional concern was the long periods of artificial droughts the estuary were currently experiencing and the impact this would have on fish recruitment.

The overall **Estuarine Importance Score** for the Palmiet Estuary, based on its present state, is **58**, signifying that the estuary is of **average importance**. The Palmiet Estuary abuts the Kogelberg Biosphere, and is included in a core set of estuaries that needs to be protected to meet biodiversity targets in South Africa. The pressures currently contributing to the degraded health of the Palmiet Estuary are poor water quality and reduction in river inflow in summer, which can be easily mitigated. Thus, the **REC for the Palmiet Estuary is a Category B.**

2.1 QUANTIFICATION OF THE RESERVE

Hydrological data were provided by Aurecon Consulting Engineers for the Reference Conditions, Present State and Scenarios 1 to 4. Scenario 5 and 6 were generated at the EWR workshop and represent minor changes to the Present State.

Scenario name	MAR (million m ³)	% Remaining	Description
Reference Condition	256.3	100	Natural (~ 100 to 150 years ago)
Present State	163.7	63.9	Current level of catchment development
Scenario 1	185.2	72.2	Minimum Degradation - Campanula Dam
Scenario 2	161.3	62.9	Different pump rates
Scenario 3	148.7	58.0	No EWR releases and Lower Steenbras raised
Scenario 4	111.18	43.4	Lower Steenbras raised, Campanula Dam and no EWR releases
Scenario 5	163.7	63.9	Similar to Present State, with a 66 % reduction in nutrient input from the catchment
*Scenario 6	161.3	62.9	Similar to Scenario 2, but elevate base flows, with flows <1.0 m ³ s ⁻¹ occurring for 22 % of the time, i.e. flows not less than 1.0 m ³ s ⁻¹ for longer than 3 months in a year.

Table 2.1EWR scenarios

The recommended Ecological Water Requirement is defined as the runoff scenario (or a slight modification thereof) that represents the highest reduction in river inflow that will still protect the aquatic ecosystem of the estuary and keep it in the recommended EC. In evaluating Scenarios 1 to 4, it was assumed that only river inflow from the Palmiet Catchment would be modified and that other related anthropogenic activities (e.g. fishing, bait collection and human disturbance) will remain at present levels.

Variable	Present Future Runoff Scenar						
Vallable	Fresent	1	2	3	4	5	6
Score	67	69	66	66	59	68	76
Category	С	С	С	С	D	С	В

Table 2.2 EcoStatus scores for each scenario

Scenario 6 was selected as the recommended Ecological Water Requirement for the Palmiet Estuary.

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	20.44	8.79	3.58	2.81	2.35	2.44	6.71	12.85	25.23	43.50	36.36	27.49
90%ile	10.43	3.90	1.43	0.82	0.83	1.05	3.53	7.91	19.45	22.70	26.15	17.93
80%ile	6.61	2.52	1.00	0.57	0.68	0.81	2.06	5.38	12.39	17.16	19.62	13.37
70%ile	5.89	1.98	1.00	0.52	0.54	0.56	1.50	4.34	9.39	13.35	16.73	11.27
60%ile	4.52	1.66	1.00	0.52	0.52	0.51	1.19	3.78	8.25	11.40	15.80	9.75
50%ile	3.66	1.47	1.00	0.52	0.49	0.44	1.00	3.12	7.03	9.91	13.54	7.91
40%ile	3.17	1.36	1.00	0.45	0.34	0.33	1.00	2.56	5.46	8.88	11.20	6.58
30%ile	2.81	1.20	1.00	0.35	0.32	0.30	1.00	2.13	4.14	6.64	9.94	6.05
20%ile	2.40	1.00	1.00	0.32	0.29	0.27	1.00	1.60	3.57	5.43	8.43	5.67
10%ile	1.76	1.00	1.00	0.28	0.26	0.25	1.00	1.30	2.56	4.63	7.01	5.05
1%ile	1.22	1.00	1.00	0.10	0.08	0.12	1.00	1.00	1.27	3.00	5.02	3.95

 Table 2.3
 Flow distributions for the recommended flow scenario (Scenario 6)

2.2 **RECOMMENDATIONS**

Note that an increase in river inflow in itself (i.e. Scenario 6) would not be sufficient to ensure the recommended level of estuarine functioning. The following restoration measures are required to improve the present health of the Palmiet Estuary:

- Manage anthropogenic nutrient and organic matter inputs to the estuary through improved agricultural and urban landscape management;
- Improve the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present recreational angling (and the occasional gillnetting) accounts for approximately 0.2 tonne annually. This includes the requirement for improved control of the harvesting of eels from the catchment.
- Restrict bait collection when the mouth is closed, since recruitment cannot occur during extended periods of mouth closure as it leads to the depletion of important food resources in the estuary.
- Install a fish ladder at the gauging weir and an eelway at the dams to facilitate migration of fishes into the lower river reaches.

Any assessment of future water-resource developments should also include an evaluation of the success of the implementation of these non-flow related mitigation measures in restoring the habitat and protecting biota. The setting and achievement of national management objectives for the Palmiet Estuary will require a high level of co-operative governance between the various management authorities. Lastly, it is recommended that a Palmiet Estuarine Management Plan be developed.

3 VOLUME 3: BERG ESTUARY EWR REPORT AND APPENDICES A-J

Volume 3 addresses the generation of Ecological Water Requirement (EWR) data for the Berg Estuary, a large system located on the West Coast, north of Cape Town.

The **Present Ecological Status** of the estuary is a **C**. Major drivers of change in the system were a significant reduction in river inflow (floods and baseflows), but it is likely that the estuary is on a negative trajectory of change, because of the extremely low lowflows under the present state (< 1 m^3s^{-1}), particularly during the summer months. Maintaining the *status quo* would therefore likely result in a decline in condition. The estuary is considered highly important.

Total economic value of the Berg estuary is estimated to be R75.6 million, with by far the largest component of this value being derived from turnover in the property sector (R48.6 million), followed closely by visitor expenditure (R18.3 million) and nursery value (R8.1 million). Subsistence and existence value make relatively small contributions to total economic value. This places the Berg estuary firmly on the upper end of the value spectrum for temperate estuaries in South Africa.

The recommended Ecological Reserve Category (ERC) represents the level of protection assigned to an estuary. In addition to being categorised as a 'highly important estuary', the Berg River Estuary has also been targeted as a Desired Protected Area (DWAF 2004a). Therefore, according to the guidelines for assigning a recommended ERC, the condition of the estuary should be elevated to a Category A or the Best Attainable State (BAS).

3.1 QUANTIFICATION OF THE RESERVE

Hydrological data were provided by Aurecon Consulting Engineers for the Reference Conditions, Present State and future scenarios (Table 3.1).

Scenario Name	Scenario Description	Summer lowflow (m³s⁻¹)	Historic Firm Yield (Mm ³)	Historic Firm Yield: wrt. BRD (%)	Revised Estuary MAR (1920-2004)
Present state	Present day with Berg River Dam in Place	0.3	547	0	500
Scenario 1	Present day without Berg River Dam	0.3	462	-85	594
Scenario 2	Augmentation of Voelvlei dam - Phase1 - No raising. 3m ³ s ⁻¹ diversion	0.3	574	27	471
Scenario 3	Augmentation of Voelvlei dam - Phase2a - No raising. 20m³s ⁻¹ diversion	0.3	591	44	450
Scenario 4	Augmentation of Voelvlei dam - Phase2b - 20m ³ s ⁻¹ diversion, raise Voelvlei dam by 9 m	0.3	613	66	394
Scenario 5	Raised Misverstand, Imposed resdss ifrC. Ifr = 23% of natural flow	0.3	571	24	405
Scenario 6	Raised Misverstand, Imposed resdss ifrD. Ifr = 15% of natural flow	0.3	585	38	396
Scenario 7	Present day with Berg River Dam in Place	0.9	539	-8	506

Table 3.1EWR scenarios

Scenario Name	Scenario Description	Summer lowflow (m ³ s ⁻¹)	Historic Firm Yield (Mm ³)	Historic Firm Yield: wrt. BRD (%)	Revised Estuary MAR (1920-2004)
Scenario 8	Raised Misverstand, Imposed resdss ifrD. Ifr = 15% of natural flow	0.15	587	40	395
Scenario 9	Present state with increased lowflows	Dec 2, Jan 1.5, Feb - Mar 1, Apr 3	529	-18	513
Scenario 10	Present state with increased lowflows and improved anthropogenic	Dec 2, Jan 1.5, Feb - Mar 1, Apr 3	529	-18	513

Given the extent of the existing water resources infrastructure in the catchment (e.g. Berg River Dam) and the extent of transformation, it would be impractical to improve the condition of the Berg River Estuary to a Category of A, or indeed a Category B. Using flow alone, the condition could only be improved by 3% (from 64 to 67%). Even if non-flow related mitigation measures, such as removing unutilised infrastructure in the lower estuary, reducing agricultural impacts on the floodplain, reducing the application of fertilizers in the catchment and eradicating illegal gill net fishing in the estuary, were also implemented the condition would not reach a Category B. Thus, the BAS for the estuary is a **Category C**.

Table 3.2	EcoStatus scores for each scenario
-----------	------------------------------------

VARIABLE	Present	Future Runoff Scenario									
VARIABLE	Flesen	1	2	3	4	5	6	7	8	9	10
Score	64	66	62	61	59	59	58	65	58	67	72
Category	С	С	С	С	D	D	D	С	D	С	С

Most of the scenarios evaluated in this study resulted in the Berg River Estuary dropping into lower category than PES mainly because the summer lowflows were lower than Present Day. Reduced summer lowflows increase the upstream extent of saline water penetration. The impact of reduced high flows was less pronounced.

Scenario 7, the Present inflow scenario with marginally reduced minimum summer low requirements of $0.6 \times \text{m}^3 \text{s}^{-1}$ was selected as the recommended EWR for the Berg River Estuary.

Impacts of the various flow scenarios examined in this study on economic value of the Berg estuary was estimated for turnover in the real estate sector, visitor expenditure, and the nursery value of the estuary. Total estimated value for the Berg estuary for these three components examined for the future flow scenarios is R75.0 million per annum at present. This value increases marginally under most of the future scenarios (aside from Scenario 9), due to increases in all components of value under these scenarios up a maximum of R78.6 million per annum under Scenario 10. Under Scenario 9, modest increases in real estate turnover are offset by the lack of any change in recreational utility and a reduction in nursery value.

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	46.97	30.38	14.58	5.30	7.03	8.36	23.43	64.98	120.14	220.34	185.50	139.78
90%ile	22.06	12.70	2.71	1.46	1.24	1.81	7.51	29.83	63.86	114.04	117.06	54.26
80%ile	15.53	8.51	0.93	0.90	0.90	0.90	5.61	13.83	37.23	60.90	85.14	38.81
70%ile	11.56	6.26	0.60	0.90	0.90	0.90	3.91	10.26	31.42	46.06	55.93	32.27
60%ile	9.69	4.88	0.60	0.90	0.90	0.90	2.08	8.59	19.69	36.07	44.29	23.95
50%ile	8.28	4.02	0.60	0.90	0.90	0.90	1.42	6.90	16.13	27.74	28.66	20.15
40%ile	7.56	3.74	0.60	0.90	0.90	0.90	1.00	5.43	11.46	21.97	22.95	15.90
30%ile	6.69	3.31	0.60	0.90	0.90	0.90	0.90	4.33	9.78	17.19	19.04	14.13
20%ile	6.22	2.73	0.60	0.90	0.90	0.90	0.90	3.43	7.75	13.22	15.91	11.00
10%ile	5.22	2.32	0.60	0.90	0.90	0.90	0.90	2.73	6.19	8.81	11.34	8.44
1%ile	3.79	0.60	0.60	0.60	0.60	0.60	0.90	1.49	3.61	4.67	7.28	4.83

 Table 3.3
 Flow distribution for the recommended flow scenario (Scenario 7)

Allowing the condition of the Berg River Estuary to further decline from PES may have the following implications:

- Nuisance macroalgal growth during the summer months, with negative impacts on bird fauna, recreational usage and aesthetics (i.e. 'loss of value').
- Increase in abundance and occurrence of nuisance macrophytes, notably water hyacinth in the upper estuary and *Enteromorpha* in the lower estuary, with negative impacts on marginal salt marsh vegetation, intertidal invertebrate populations inhabiting sand and mudflats in the lower estuary, bird fauna of the estuary, and recreational usage and aesthetics.
- Reduced numbers of estuarine dependent fish and invertebrate species, particularly those that use the upper reaches of the estuary as a spawning and nursery ground.
- Reduced cueing effect to estuarine dependent invertebrate and fish species, and a possible reduction in diversity and abundance of fish in the estuary.

These are also likely to have a ripple effect on economic goods and services provided by the adjacent marine environment, e.g. the marine fisheries.

3.2 RECOMENDATIONS

Thus, it is strongly recommended that decisions regarding the future state of the Berg River Estuary carefully consider potential impacts on all users. Given the importance of the Berg River Estuary, every effort should also be made to implement the measures required to mitigate the non-flow related impacts on the system, such as:

- eradicate invasive alien vegetation (especially dense tree stands) from floodplains;
- remove derelict, redundant and old quays, jetties, wharfs and revetments; and rehabilitate banks to natural sediments;
- prohibit dredge spoil dumping (from lower main channel as well as marina) in inappropriate areas;
- install additional culverts into road and rail bridge embankments;
- manage agricultural practises in the estuary to avoid trampling of estuarine vegetation by livestock;
- manage agricultural practises in the catchment to minimise nutrient and sediment loads entering the estuary;
- control fish factory effluent discharged to the estuary to reduce nutrient loading to the system;
- upgrade the sewage treatment works in the catchment to reduce nutrient inputs to the estuary.

4 REFERENCES

- Brown, C.A., Sparks, A. and Howard, G. 2000. Palmiet River Instream Flow Assessment: IFR for the Riverine Ecosystem -Proceedings of the IFR Workshop and determination of associated dam yields. Report to Department of Water Affairs and Forestry. No. G400-00-0499. 168 pp.
- Department of Water Affairs and Forestry. 1996. Skuifraam Feasibility Study. Berg River IFR refinement workshop proceedings. Prepared by Brown, C.A., Southern Waters Ecological Research and Consulting. DWAF report No. PG/100/00/1296.
- Department of Water Affairs and Forestry (DAWF). 2003. Intermediate determination of resource directed measures for the Breede River estuary. Breede River basin study. Directorate: National Water Resources Planning. DWAF report No. P H 00/00/1102. In association with CSIR, Pretoria, South Africa.
- Department Of Water Affairs and Forestry (DWAF) (2004a) Water resource protection and assessment policy implementation process. Resource directed measures for protection of water resource: Methodology for the Determination of the Ecological Water Requirements for Estuaries. Version 2. Pretoria.
- Dollar, E.S.J., Brown, C.A., Turpie, J.K., Joubert, A.R., Nicolson, C.R. and Manyaka, S. 2006: The development of the Water Resources Classification System (WRCS). Volume 1. Overview and 7step classification procedure. CSIR Report No., Department of Water Affairs and Forestry, Pretoria, 70pp.
- Ewart-Smith, J. and Brown, C.A. 2002. Intermediate Reserve Determination for the Hex River. Southern Waters' report for Department of Water Affairs and Forestry.
- Harding, W.H., Brown, C.A. 2002. Voelvlei Intermediate Reserve Determination (Lower Berg River).
 Drainage Region G10J/K (Berg Water Management Area). Volume 1: background and synthesis.
 Southern Waters Ecological Research and Consulting cc Cape Town and Department of Water
 Affairs and Forestry, Pretoria, South Africa. Unpublished consultancy report.
- Hughes, D.A., Münster, F. 2000. Hydrological information and techniques to support the determination of the water quantity component of the ecological Reserve for rivers. Report to the Water Research Commission by the Institute for Water Research, Rhodes University. WRC Report No. 873/3/2000, Pretoria, South Africa.
- Hughes, D.A., Hannart, P. 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology, 270, 167-181.
- Kleynhans, C.J. 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River (Limpopo system, South Africa). Journal of Aquatic Ecosystem Health **5**: 41-54.
- Kleynhans, C.J. 2000. Desktop estimates of the ecological importance and sensitivity categories (EISC), default ecological management classes (DEMC), present ecological status categories (PESC), present attainable ecological management classes (present AEMC), and best attainable ecological management class (best AEMC) for quaternary catchments in South Africa. DWAF report. Institute for Water Quality Studies.
- Kleynhans, C.J., Mackenzie, J., Louw, D.A. 2008. River EcoClassification: Manual for EcoStatus Determination (Version 2) Module F: Riparian Vegetation Response Assessment Index (VEGRAI). Water Research Commission and Department of Water Affairs and Forestry, Pretoria. WRC Report No. TT333/08.
- Louw, D. and Brown, C.A. 2001. Breede River Basin Study. Reserve determination using the Building Block Methodology. Southern Waters report for Department of Water Affairs and Forestry.
- Rowntree, K., L. Du Preez (in prep). Module B: Geomorphology Driver Assessment Index (GAI) in C.J.
 Kleynhans and M.D. Louw, *River EcoClassification manual for Ecostatus Determination* (Version 2). Water Research Commission, Pretoria, South Africa.

Thirion, C. 2008. River EcoClassification: Manual for EcoStatus Determination (Version 2) Module E: Volume 1 Macroinvertebrate Response Assessment Index (MIRAI). Water Research Commission and Department of Water Affairs and Forestry, Pretoria. WRC Report No. TT332/08.